Some Nonasymptotic Results on Resampling in High Dimension, Ii: Multiple Tests1 by Sylvain Arlot, Gilles Blanchard2 and Etienne Roquain

نویسنده

  • E. ROQUAIN
چکیده

In the context of correlated multiple tests, we aim to nonasymptotically control the family-wise error rate (FWER) using resampling-type procedures. We observe repeated realizations of a Gaussian random vector in possibly high dimension and with an unknown covariance matrix, and consider the oneand two-sided multiple testing problem for the mean values of its coordinates. We address this problem by using the confidence regions developed in the companion paper [Ann. Statist. (2009), to appear], which lead directly to single-step procedures; these can then be improved using step-down algorithms, following an established general methodology laid down by Romano and Wolf [J. Amer. Statist. Assoc. 100 (2005) 94–108]. This gives rise to several different procedures, whose performances are compared using simulated data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Nonasymptotic Results on Resampling in High Dimension, I: Confidence Regions1 by Sylvain Arlot, Gilles Blanchard2 and Etienne Roquain

We study generalized bootstrap confidence regions for the mean of a random vector whose coordinates have an unknown dependency structure. The random vector is supposed to be either Gaussian or to have a symmetric and bounded distribution. The dimensionality of the vector can possibly be much larger than the number of observations and we focus on a nonasymptotic control of the confidence level, ...

متن کامل

Some Non - Asymptotic Results on Resampling in High Dimension , Ii : Multiple Tests

In the context of correlated multiple tests, we aim at controlling non-asymptotically the family-wise error rate (FWER) using resampling-type procedures. We observe repeated realizations of a Gaussian random vector in possibly high dimension and with an unknown covariance matrix, and consider the one and two-sided multiple testing problem for the mean values of its coordinates. We address this ...

متن کامل

Some Non - Asymptotic Results on Resampling in High Dimension , I : Confidence Regions

We study generalized bootstrap confidence regions for the mean of a random vector whose coordinates have an unknown dependency structure. The random vector is supposed to be either Gaussian or to have a symmetric and bounded distribution. The dimensionality of the vector can possibly be much larger than the number of observations and we focus on a non-asymptotic control of the confidence level,...

متن کامل

Some Nonasymptotic Results on Resampling in High Dimension, I: Confidence Regions1 by Sylvain Arlot,

We study generalized bootstrap confidence regions for the mean of a random vector whose coordinates have an unknown dependency structure. The random vector is supposed to be either Gaussian or to have a symmetric and bounded distribution. The dimensionality of the vector can possibly be much larger than the number of observations and we focus on a nonasymptotic control of the confidence level, ...

متن کامل

Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector

We derive non-asymptotic confidence regions for the mean of a random vector whose coordinates have an unknown dependence structure. The random vector is supposed to be either Gaussian or to have a symmetric bounded distribution, and we observe n i.i.d copies of it. The confidence regions are built using a data-dependent threshold based on a weighted bootstrap procedure. We consider two approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010